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ABSTRACT

Topographic drag schemes depend on grid-scale representations of the average height, width, and ori-
entation of the subgrid topography. Until now, these representations have been based on a combination of
statistics and dimensional analysis. However, under certain physical assumptions, linear analysis provides
the exact amplitude and orientation of the drag for arbitrary topography. The author proposes a compu-
tationally practical closure based on this analysis.

Also proposed is a nonlinear correction for nonpropagating base flux. This is patterned after existing
schemes but is better constrained to match the linear solution because it assumes a correlation between
mountain height and width. When the correction is interpreted as a formula for the transition to saturation
in the wave train, it also provides a way of estimating the vertical distribution of the momentum forcing. The
explicit subgrid height distribution causes a natural broadening of the layers experiencing the forcing.
Linear drag due to simple oscillating flow over topography, which is relevant to ocean tides, has almost the
same form as for the stationary atmospheric problem. However, dimensional analysis suggests that the
nonpropagating drag in this situation is mostly due to topographic length scales that are small enough to
keep the steady-state assumption satisfied.

1. Introduction

Mountain drag parameterizations estimate the total
transfer of momentum across the topographic bound-
ary (the base flux) as well as the convergence of the
pseudomomentum flux as a function of height above
the boundary. Previous schemes for estimating the base
flux have relied entirely on statistical measures of the
height, shape, and orientation of the unresolved terrain,
guided by dimensional reasoning (e.g., Baines and
Palmer 1990; Lott and Miller 1997; Scinocca and Mc-
Farlane 2000). Here I propose a scheme that uses an
analytical estimate of the drag vector. This estimate is
exact in the limit where the mountain waves are linear,
inviscid, and hydrostatic, and the medium is nonrotat-
ing and uniform in time and space.

I also propose a correction for nonlinearity at the
source. It is similar in many ways to existing schemes
that allow a gradual transition between linear and non-
linear dimensional drag laws (e.g., Kim and Arakawa
1995, and references therein; Lott and Miller 1997; Sci-

nocca and McFarlane 2000). However, the proposed
treatment exploits the correlation of mountain height
with mountain width together with the known range of
mountain heights within the grid cell. The motivation
for adding this complexity is to produce a closer match
to the analytical result in the linear limit as well as a less
arbitrary transition to nonlinearity. A beneficial side
effect is to make the overall scheme less tunable.

The impact of the subgrid topography on the re-
solved flow is due to the convergence of the pseudo-
momentum flux. A straightforward extension of the
nonlinear base-flux correction yields an algorithm for
clipping the flux to the saturation value as a function of
height so as to determine this impact on the resolved
flow. This part of the scheme adheres to traditional
assumptions going back to Lindzen (1981), Palmer et al.
(1986), and Pierrehumbert (1987).

2. Base-flux closure

Drag parameterizations for the atmosphere generally
assume that the disturbance is steady and contains only
upward-propagating waves. If we add to these assump-
tions certain constraints on the horizontal scale of the
forcing, such that the waves are broad enough to be
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hydrostatic but narrow enough to be unaffected by
sphericity, rotation, horizontal shear, or baroclinicity,
we can calculate the total drag in the linear limit as
accurately as we know the shape of the terrain. This
section begins with the linear analysis and then extends
the scheme to deal with nonlinearity at the source.

a. Linear drag

We suppose that the topography can be analyzed into
Fourier amplitudes ĥ(k), where k � (k, l) is the hori-
zontal wavenumber. This is permissible because the
scales of interest are much smaller than the planetary
scale. Let Vk � V · k/|k| denote the component of the
large-scale flow, V, parallel to k. Then the linearized
lower boundary condition is

Ŵ�k� � Vki|k|ĥ�k�, �1�

where Ŵ is the transform of W(x, y) � w(x, y, z � 0),
the vertical velocity component at the ground. With this
transform, it is assumed that all other spatial variability
in the flow has much larger horizontal scales than the
mountain waves.

It is also assumed that d(|m|�1)/dz � 1, where m is the
stationary vertical wavenumber, and that m � ��1|d�/
dz|, where �(z) is the density profile. If we ignore hori-
zontal variations of the buoyancy frequency, N, and
consider only hydrostatic scales |k| � m, the Wentzel–
Kramers–Brillouin (WKB) approximation for the ver-
tical structure is

ŵ�k, z� � Ŵ�k� exp� i �
0

z

m dz�� exp�z�2H�, �2�

with H � �/(�d�/dz) and m � N/Vk � O(�2/H2) (e.g.,
Holton 1973). Here � denotes a scale for the vertical
wavelength, inversely proportional to the typical m. It
then follows from (1) and (2) that, at the surface,

���ŵ���z � ��	N � iVk��2H�
|k|ĥ � O��2�H2�. �3�

Since there is no source of vertical vorticity at the
ground, the horizontal velocity perturbation, say V�, is
completely determined by a scalar potential, �(x, y),
such that 
� � �V�. Here and in the following, 
 de-
notes the horizontal operator. Conservation of mass
implies 
2� � ��(�w)/�z, which, with (3), leads to

�̂�k� � ��N
ĥ�k�
|k| �

�

2H

ĥ�k�

|k|2
ik · V. �4�

Here we have retained only the O(�/H) correction (the
term involving V), which we call �̂1. The dominant first
term, say �̂0, does not depend on the resolved wind and
produces

�0�x, y� � ��N �� ĥ�k�
|k| exp�ik · x� dk dl, �5�

with x � (x, y). Thus, �0 is a slightly smoothed trans-
formation of the terrain height. The velocity perturba-
tion (1/�)
�0 produced by each spectral component of
h(x, y) is perpendicular to the corresponding phase
lines of the topography and directed downhill.

If the integral in (5) converges, the spatial-transform
equivalent is

�0�x, y� � �
�N

2	 �� h�x��

|x � x�| dx� dy�. �6�

The correction due to the vertical density gradient
can also be put into the spatial domain. The easiest
way is to define A(x, y) � �
�2h so that �1 �
�(�/2H)V · 
A.

The integrals in (5) and (6) diverge if ĥ does not
decrease as fast as |k| for small |k| (large scales). How-
ever, the result is already physically inconsistent at
large scales. For both mathematical convergence and
physical consistency, the input topography must be fil-
tered to retain only the scales that force stationary,
nonrotating gravity waves. Then, as a practical matter,
(6) need not be integrated over the entire globe for
each x, but only over a radius equal to a small multiple
of the high-pass filter scale. It is simplest to allow the
topographic dataset to establish the low-pass scale. The
problem of filtering is discussed by most drag-scheme
developers, including Baines and Palmer (1990), Lott
and Miller (1997), and Scinocca and McFarlane (2000).
More is said about it below.

While the subgrid velocity perturbation is only
weakly dependent on the resolved velocity (through the
density gradient and �1), the momentum flux across a
horizontal surface, namely,

��x, y� � �wV�, �7�

depends strongly on the resolved wind through w �
V · 
h. Let �̃ � (�rNr/�N)�, where the subscript r de-
notes constant reference values. Then

� �
�N

�rNr
	
�̃�
h�T
V. �8�

The factor in brackets, 
�̃(
h)T� T, is the matrix prod-
uct of two-dimensional vectors that depend only on the
terrain, except for the small contribution from �1. Sub-
ject to our assumptions, T contains all relevant infor-
mation about the topography, including amplitude,
variance, orientation, and anisotropy. Using angle
brackets to denote a grid-cell average, we can write
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��� �
�N

�rNr
�T�V �9�

for the estimate of drag at a model grid point.
Because of the filtering, it should be consistent to

regard (5) as an integral over spherical harmonics and
to interpret |k| as the total spherical-harmonic wave-
number. Spherical-harmonic analysis of h is also a prac-
tical way to obtain the field A(x, y) and the various
second partial derivatives of A needed for T. However,
for the examples to follow, the flow disturbance was
obtained from (6) and the small contribution from �1

was ignored. The topography was preprocessed using a
spatial filter that passes only scales of less than about
1.5° of longitude and latitude in the extratropics. The
filtering scale, d, was allowed to vary with latitude so as
to keep the Rossby number, V/fd, of order unity, where
V(y) is a profile of typical surface wind speeds, and f(y)
is the Coriolis parameter. The horizontal derivatives in
(8) make the result fairly insensitive to the choice of
scales retained by a high-pass filter, and this allows a
time-independent choice for d(y).

Using a physical filter instead of a numerical one
creates the danger of systematically overcounting the
drag when the model grid spacing is smaller than d.
With a physical filter, the subgrid drag has to be defined
as the difference between the total parameterized drag
and the model-dependent resolved drag, that is, the
subgrid contribution is not known without diagnosing
the resolved drag. In many climate-model applications,
resolved drag can be neglected. This approach does not
solve the problem of representing strong scale interac-
tions near the grid scale—a generic problem of closures
that also applies, for example, to moist convection
schemes in both the time and space domain.

From (6), the velocity scales as Nrhr, where hr is a
measure of the mesoscale component of the topo-
graphic height. Therefore, mountain wave velocities
have an order of magnitude of V� (10�2 s�1)(103 m)�
10 m s�1, given a typical mesoscale relief of 1000 m. If
the scale of the topography is 100 km and the ambient
wind is of order 10 m s�1, the vertical velocity is of
order 0.1 m s�1. It follows that the drag is characteris-
tically D � �r(10 m s�1) (0.1 m s�1) � 1Pa. The tensor
T is dominated by the diagonal elements, which are of
the order of �r(10 m s�1).

Shown in Fig. 1 is a plot of the linear drag ��� over the
Western Hemisphere for an assumed large-scale wind
that is purely zonal at �7 m s�1 in the Tropics and 13
m s�1 in the extratropics. A constant buoyancy fre-
quency, Nr � 0.01 s�1, and constant density, �r � 1 kg
m�3, are also assumed. The same calculation for the
Asian continent, shown in Fig. 2, assumes a large-scale

wind from the west at 10 m s�1 everywhere. The aver-
aging in both Fig. 1 and Fig. 2 is over latitude–longitude
cells of about 1.5° on a side. The topographic dataset
has a resolution of 1/30°.

b. Nonlinear extension

Nonlinearity is of the order of the nondimensional
mountain height, h̃ � (N/V)h. We can write the lower
boundary condition as a perturbation series based on h̃
(e.g., Smith 1977):

w � V · 
h � V� · 
h � V · 
��zh� � hVz · 
h � . . . ,

�10�

where � is the lowest-order vertical particle displace-
ment (with �z its first derivative) and Vz is the resolved
vertical shear. The first-order nonlinearities are repre-
sented by the three explicit terms on the right-hand
side. The first two are associated with low-level block-
ing (e.g., Pierrehumbert and Wyman 1985), deflection
(e.g., Miranda and James 1992), and periodic steepen-
ing above the mountain (Smith 1977). Blocking and
deflection alter the total drag and cause some of it to be
deposited at low levels close to the source. This part is
referred to as nonpropagating.

The remaining term on the right-hand side of (10)
could be included analytically by replacing (9) with

��� �
�N

�rNr
��T�V � �S�Vz�, �11�

where S � h
�̃(
h)T. However, this correction is less
significant than the other two nonlinear effects when
the local Richardson number, N2/(Vz)2, is large. The
Richardson number is assumed to be large in making
the WKB approximation leading to (5). Moreover, the
uncertainty about the proper value of V (and N) to use
when a planetary mixed layer is present could easily
exceed the size of a correction for Vz.

The plan is to evaluate the nonpropagating drag as-
sociated with blocking mountains by resorting to di-
mensional analysis and assuming a fast orographic ad-
justment process (Pierrehumbert and Wyman 1985;
Pierrehumbert 1987; Olaffson and Bougeault 1996).
What follows is a fairly standard treatment along these
lines (e.g., Lott and Miller 1997), except that it allows
for a range of mountain heights within the grid cell. As
mentioned briefly at the beginning, the motivation for
adding complexity here is 1) to produce a better match
between the linear drag and the dimensional estimate
in the limit of small terrain and 2) to set up a more
rational, less tunable, transition to partially blocked
flow. Thus, the analytical result will be used to con-
strain the drag coefficient for propagating components,
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and this scaling, together with some assumptions about
the mountain ensemble, will determine the transition to
partially blocked flow. Since the excess mountain
height responsible for blocking cannot be straightfor-
wardly attributed to spectral components, the key as-
sumptions here will be 1) that the topography is char-
acterized by well-defined features, each with a well-
defined areal extent, that can be binned into height
ranges, and 2) that the flow disturbances induced by
individual features do not interact strongly.

1) DRAG MODEL FOR INDIVIDUAL FEATURES

If the mountain height exceeds a certain threshold,
hc, that depends on both V and N, the flow is blocked or
deflected below a level z� h� hc. Here, h is being used

to represent the height of individual mountains, rather
than a continuous distribution in space. For terrain fea-
tures with heights less than hc, the drag is entirely linear
and propagating. For those greater than hc, it includes a
propagating and a nonpropagating contribution, as
shown schematically in Fig. 3. The part that launches
internal waves has a height of hc, measuring down from
the summit. To relate the width L of this part of the
mountain to elevation above the base, a power law with
parameter � is introduced:

L�z� � Lb�1 � z�h��. �12�

Thus, � � 1 corresponds to triangular mountains, � �
1 t� blunt mountains and � � 1 to pointed ones. This
shape is a generalization of the one assumed by Lott
and Miller (1997).

FIG. 1. The drag associated with stationary linear mountain waves over North and South
America and western Antarctica. The assumed surface wind is purely zonal at�7 m s�1 in the
Tropics and 13 m s�1 elsewhere. The assumed surface static stability and density are 0.01 s�1

and 1.0 kg m�3, respectively. The arrow below the plot shows the scale for 2 Pa.
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As the flow becomes blocked by topography, the
drag law in the blocked layer changes from Dl �
�NVh2/L to Dnl � �V

2(h � hc)/L, where V and L are
the ambient wind component and length of the moun-
tain, respectively, in the same direction. Orographic ad-
justment essentially means that the nondimensional
depth h̃� h(N/V) of the unblocked, laminar flow below
the summit is set by a universal threshold,
h̃c � hc(N/V), related to the critical Froude number.
The assumption that the blocked flow adjusts to the
depth z � h � hc independently for each feature may
be the weakest part of this closure.

To incorporate the tapering of the mountain, we re-
fine the formula for the nonlinear drag per unit area as
Dnl � �V

2�L(z) dz/L2
b, with the integral ranging from

zero to h� hc. Then the total drag per unit area exerted
by a mountain is sum of the two components,

Dp � a0 min[1, �h̃c�h̃�2��]h̃2��V3
�NLb�,

Dnp � a1{1 � min[1, �h̃c�h̃�1��]}
h̃

1 � �
��V3

�NLb�, �13�

where Dp and Dnp refer to the propagating and non-
propagating parts of the base flux, respectively, and a0

and a1 are constant drag coefficients. This purely di-
mensional formulation is similar to that of Lott and
Miller (1997) except that it limits the propagating drag
to the saturation value when h̃ � h̃c and does not as-
sume � � 1/2. The parameter � appears in Dp because
the propagating drag is inversely proportional to L. It
appears in Dnp because the vertical cross section, shown
hatched in Fig. 3, is reduced by the tapering of the
mountain when � � 0.

2) DRAG MODEL FOR THE GRID-CELL ENSEMBLE

Linear drag closures typically take Lb in (13) to be a
universal constant and estimate h̃2 as the mean-squared
height of the filtered topography within the grid cell.

FIG. 3. Details of the scheme for separating the propagating part of the base flux from the
nonpropagating (blocked or deflected) part. The hatched area is the cross section presented
to the blocked or deflected part of the flow.

FIG. 2. The drag associated with stationary linear mountain waves over Asia. The assumed
surface wind is purely zonal at 10 m s�1 everywhere. The assumed surface static stability and
density are as in Fig. 1. The scale for 2 Pa is shown by the arrow below the plot.
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However, we have a better chance of matching the ana-
lytical drag if h and Lb are allowed to covary when
averaging (13) over the grid cell. In the general case,
with both Dnp � 0 and Dp � 0, it is impractical to
average explicitly over the subgrid height distribution
because while h̃c is assumed constant, h̃ is time depen-
dent.

We consider a particularly simple relationship be-
tween h and Lb that keeps the overall computation
tractable. The analysis in the appendix suggests that we
may assume a power law,

L�L0 � �h�h0�

, �14�

where L0, h0, and � are universal constants and L refers
to Lb. Based on the analysis in the appendix, our best
global estimate is � � 0.4. Although the relation (14)
seems to suggest a �2/� power spectrum for topo-
graphic height, it is actually a probability distribution
across height bins rather than spectral components. The
functional form of (14) satisfies the reasonable require-
ment of monotonicity and the practical requirement of
closed-form integrability.

If we can neglect overlaps between mountains and
ignore any correlation between anisotropy and moun-
tain height, the areal coverage dA � LdL of features
in the range from h̃ to h̃ � dh̃ will be proportional to
n(h̃)h̃2��1 dh̃, where n(h̃) is the number of features in
the range. For this number density we assume another
power law, namely, n(h) � n1(h/h1)��. We introduce
n(h̃) mainly to acknowledge that it need not be unity:
the value of � used in the examples to follow is only a
guess. The reasons for the specific functional form of
n(h̃) are the same as for the relation (14), namely,
monotonicity and integrability. Because of area aver-
aging, the constants n1 and h1 will not appear in any
results.

Since V and N are assumed constant over the grid
cell, we can use the stated assumptions about the moun-
tain height distribution to integrate (13) with respect to
area and obtain

�Dp� � a0

H��2 � 
 � �� � H��
 � � � ��h̃c
2��

H�2
 � ��

� h̃0

��V3

�NL0�

�Dnp� � a1

H��1 � 
 � �� � H��
 � � � ��h̃c
1��

�1 � ��H�2
 � ��

� h̃0

��V3

�NL0� �15�

for the average drag. Here H(a)� [(h̃max)a� (h̃min)a]/a,
and the superscript on H means that h̃ is replaced with
either h̃� �min(h̃, h̃c) or h̃� �max(h̃, h̃c). The limit for

small a is H(0) � log(h̃max/h̃min). Note that the limits of
the area integration have been transformed to height
limits, hmin and hmax. The contribution from the par-
tially blocked terrain in the numerator for Dp includes
the effect of reducing the forcing area element dA by
the factor (h̃/h̃c)

�2�, as implied in Fig. 3. This sort of
clipping from the sides is essentially the reverse of that
described by Lindzen (1988) for the wave train itself.

The small-amplitude (h̃ → 0) limit of (15) is �D� →
D*, where

D* � a0�NV�2�L0 �16�

and

� �
V

N
h̃0


�2�H�2 � 
 � ��

H�2
 � �� �1�2

. �17�

As noted above, traditional schemes for linear base flux
use (16) with � identified as the root-mean-squared
height of the filtered topography. However, with �
given by (17), D* is proportional to �h2���, instead of
�h2�, reflecting the covariance of L and h. The lower
moment when � � 0 does yield a better universal match
to the linear solution, as we show below. The ability to
make the linear drag coefficient a weak function of
latitude and longitude supports some of the foregoing
assumptions and provides some confidence about the
validity of the next step.

3) SCALING OF THE ANALYTICAL FLUX

From this point, the procedure to separate the drag
into linear and nonlinear parts is straightforward. We
let a0 be determined by D* � |���| with D* defined by
(16) and ��� by (9). Then we use this result in (13),
allowing (9) to determine the direction of the drag. The
resulting base flux, as modified by the bulk dimensional
analysis, is

��� � ��Dp�
D*
�
�Dnp�

D* ��*, �18�

where � now refers to the corrected drag, and �* to the
original linear result (9). Only the nonlinear drag coef-
ficient a1 (in the expression for Dnp) is undetermined.
The nonpropagating part of (18) is available for forcing
the resolved momentum below a reference level, while
the propagating part is available for distribution over
the column according to a level-by-level determination
of wave saturation. Note that the propagating fraction
cannot exceed unity but the sum of the two parts does
not have this constraint.

Although the linear drag coefficient a0 is no longer
explicit, the strategy for choosing V in the dimensional
analysis should still be to minimize its variability in time
and space. The direction of �* varies between that of
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�V in the case of isotropic terrain to that of the first
eigenvector of T in the case of strongly anisotropic ter-
rain. In the latter case, the drag is insensitive to the
component of V in the direction of the second eigen-
vector, which is approximately orthogonal to the drag
in that limit. Therefore, the traditional choice of taking
V to be the component in the direction opposite the
drag roughly optimizes the match between the dimen-
sional and analytical drags with minimal variation in a0.

It also provides the physically relevant nondimensional
mountain height, h̃�Nh/V, since Nh is the scale for the
velocity perturbation in the drag direction for an indi-
vidual mountain.

c. Illustrative examples

Figure 4 compares the distribution of linear base flux
computed in three different ways. The top panel shows
the analytical drag (9) evaluated in the scalar form

FIG. 4. The distribution over the Northern Hemisphere of the linear drag computed in three
ways: (top) the analytical drag reduced to a scalar, (middle) the dimensional drag based on
topographic variance, and (bottom) the dimensional drag based on (17) with � � 0.5. Values
are normalized by the respective global maxima, which occur in the Himalayas. The output
grid has a resolution of 2.0° in latitude by 2.5° in longitude. The input grid is 1/30° in both
directions.
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D �
�

�r
V max�|T1|, |T2|�, �19�

where T1 and T2 are the eigenvalues of T. The middle
panel shows the traditional dimensional estimate using
�2 � �h2�, the variance of the filtered topography, and
the bottom panel is the new dimensional estimate, us-
ing (17) for �2. Each case uses a uniform V and � and
normalize the result by the maximum drag, which oc-
curs in the Himalayas. Both dimensional estimates fall
short of the analytical drag almost everywhere outside
the Himalayan range, but the traditional estimate is
quite a bit worse. The differences are most noticeable in
Siberia and the central Rockies. Similar differences ap-
pear in the Andes and western Antarctica (not shown).
As previously suggested, this is mainly because the de-
pendence on h in (17) falls somewhere between the
standard deviation and the mean topographic relief.
The new result is based on � � 0.5 (� is irrelevant here
for the reason mentioned just below). This choice for �
produces a slightly better match than the value sug-
gested in the appendix.

For hmin and hmax, the actual minimum and maximum
from the set of local extrema of high-pass topography
within each cell were not used. There is a great deal of
scatter in the height distribution, as shown in the ap-
pendix. To produce a less erratic estimate of the height

limits, the small-amplitude limit of Dp in (13) was av-
eraged over the actual topographic data and equated to
the small-amplitude limit of �Dp� in (15). This yielded
the desired hmax after assuming hmin � �hmax for some
fixed �. This way of handling hmin makes the linear drag
estimate independent of �. Since hmin � hmax almost
everywhere, the result is insensitive to � for realistic
choices. To integrate (13) over grid cells with band-
passed data, the integrand was taken as proportional to
h2�� and summed directly over area instead of bins.
Integrating with respect to area fails to hold h and L
fixed across individual mountains, but the consequence,
according to present assumptions, is a constant multi-
plicative factor that depends on the mountain shape
and does not change the normalized drag. The condi-
tion h � 0 was enforced by subtracting the minimum
value within a bandpass radius, with h nudged to zero in
the far field to avoid discontinuities. The same thing
was done to obtain the rms result. Although this is not
exactly the traditional rms result, it is a better match
with the analytical drag and therefore shows the sepa-
rate impact of �. For the result in the bottom panel of
Fig. 4, � � 0.

The transition from linear flux to saturation flux for
the two extreme cases of h̃min/h̃max is shown in Fig. 5,
in which �Dp�/D* is graphed as a function of h̃max/h̃c

with � � 0.4, � � 0.5, and � � 0. Also shown is the total

FIG. 5. Normalized estimates, based on dimensional analysis, of the propagating drag,
�Dp�/D* (dashed), and total drag, �Dp � Dnp�/D* (solid), as a function of normalized maxi-
mum mountain height, h̃max/h̃c, for the two extreme cases h̃min � 0 and h̃min � h̃max with � �
0.4, � � 0.5, and � � 0. The drag is normalized by the linear dimensional estimate D* defined
by (16) and (17). The nonpropagating part assumes a1/a0 � 9.0h̃c.
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normalized drag (�Dp� � �Dnp�)/D* based on the addi-
tional assumption that a1/a0 � 9.0h̃c. This choice for a1

produces a maximum total drag of approximately 2D*,
which is a compromise between the maximum drags
obtained in two- and three-dimensional nonlinear simu-
lations, as summarized by Lott and Miller (1997) and
Scinocca and McFarlane (2000). The sharpest transi-
tions in both Dp and Dnp occur for h̃max � h̃min. Results
are less sensitive to �, but large values of this parameter
make the transitions sharper (not shown).

Shown in Fig. 6 is the bulk-dimensional drag for
North America based on the same parameter choices as
in Fig. 5. The assumed large-scale wind, needed for
determining the range of h̃, is purely zonal at 10 m s�1,
and the static stability is N � 0.01 s�1 everywhere. The
critical mountain height, h̃c, is taken to be 0.7. This is a
tuning choice that will generally depend somewhat on
the procedure for determining hmax. With these choices,
it is found that flow over the Rocky Mountains is

mostly linear, whereas the Himalayas (not shown) gen-
erate mostly nonlinear base flux.

3. Level-by-level determination of momentum
forcing

To obtain the velocity tendency from �V/�t � . . .
� �(z)�1d���/dz, we need the vertical profile ��(z)�. Let
�(z) denote the vertical particle displacement in a
mountain wave and define h̃(z) � N�/V, where N(z) is
the buoyancy frequency and V(z) is the resolved wind
component in the direction opposite the net drag. De-
fine U(h̃, z) � h̃Usat, where Usat(z) �  (�/�r)V3/NL0.
Then �rU

2 is proportional to the areally averaged
pseudomomentum flux. The propagating part of the
cell-averaged base flux (13) can now be expressed as

�Dp�0�� � a0

�2
 � ��U0

��

Umax
2
�� � Umin

2
��
�r

� �Fb � Fub�, �20�

FIG. 6. The distribution over North and South America of the normalized (left) total base
flux and (right) nonpropagating fraction, according to the bulk dimensional analysis, with � �
0.4, � � 0.5, and � � 0. The total flux is normalized by D* � 0.05, where D* is the small-
amplitude limit and the small increment (in units of Pa) serves to mask out regions of weak
forcing. The assumed large-scale surface wind is purely zonal at 10 m s�1 everywhere and the
assumed static stability and density are as in Fig. 1. The input and output grids are the same
as in Fig. 4. The critical mountain height is set to h̃c � 0.7 to make the drag fully nonpropa-
gating (blocked) only in the highest part of the Andes.
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where the contributions from the “broken” and “un-
broken” parts of the field are, respectively,

Fb �
Umax


��� � 	Uc


���


� � �
Uc

2��

Fub �
	Uc


2 � 
� � Umin
2�
�

2 � 
�
�21�

with [Uc] � min[Umax, max(Umin, Uc)] and �� � � � �.
This applies at z � 0. How does this flux change as a
function of z as successive parts of the field attain h̃ �
h̃c and break?

The change to U in (20) is a z-dependent linear trans-
formation of the original integration variable �. Ac-
cording to the theorem of Eliassen and Palm (1960), the
value of U associated with a particular feature is inde-
pendent of z until that part of the field breaks. The
unbroken components are the only parts of the flux that
depend on the amplitude of the source feature, or U.
This allows us to fix the integration limits, Umin and
Umax, and move all z dependence in Dp to the satura-
tion threshold Uc. The threshold is already z dependent
because the saturation value of �̃ depends on the mini-
mum value of hc � (V/N)h̃c (dimensional) in the un-
derlying column. It is assumed that the horizontal scales
of the individual features do not change as a result of
wave breaking, so that U0, associated with the constants
in (14), is not a function of z. Therefore, the z depen-
dence in (20) is confined to Fb and Fub.

Let uc(z) � min|z��z {Uc(z�)}. Then if the flux from
each mountain is limited to the minimum of the satu-
ration value, Dc(z�) � �rU

2
sath̃

2
c, in the underlying col-

umn z� � z, the two parts of the flux �Dp(z)� are

Fb � �Umax

��� � [uc�0�]


���


� � �
uc�0�

�

�
[uc�0�]


� � [uc]

�


�
�uc

2,

Fub �
[uc]

2�
� � Umin
2�
�

2 � 
�
, �22�

where [uc] � min[Umax, max(Umin, uc)]. The first con-
tribution to Fb is due to components that were satu-
rated at launch (hence the dependence on �), while the
second is due to bins whose components have saturated
above the ground. For the latter, we have assumed no
horizontal clipping. We have also assumed that the dis-
turbance cannot gain energy from the environment or
reradiate from breaking regions (e.g., Bacmeister and
Schoeberl 1989). This means that, in layers where Uc

increases with z, the residual flux from the broken com-
ponents will hold constant at �ru

2
c � Dc, where Dc �

�rU
2
c is the local saturation value.

Figure 7 is a graph of �Dp(z)�/D*, showing the tran-
sition to saturation as a function of height above the
mountains for two different ranges of h̃ and an assumed
environmental column described in the caption. The
dotted curves show the momentum forcing, which is
proportional to the derivative of �Dp(z)�. Pseudo-
momentum is deposited in the layers where Dp is de-
creasing with height, which, in this example, occur near
the ground and just above the two assumed jets. The
forced layers are broadened and full saturation is de-
layed when the terrain features within grid cells vary
most widely in height (h̃min/h̃max � 0).

4. Time-varying resolved flow

The steady problem is the limit in which advective
time scales are much shorter than time scales of the
background flow. If one simplifies to a single back-
ground frequency, !0, the limit is expressed as Vk|k| �
|!0|. The opposite limit, Vk|k| � |!0|, is nearly as
straightforward as the steady limit [Bell (1975) gives the
linear topographic wave solution in the general case]. I
show here that the resulting drag formula is almost the
same as in the steady limit. We obtain the total drag by
integrating

��x, y� � �p�
�h � ��� �23�

along a streamline and substituting the limiting solution
for pressure perturbation p�, and wave displacement,

FIG. 7. The normalized pseudomomentum flux �Dp�/D* (solid)
and normalized momentum forcing (dashed) as a function of
height for the two extreme cases h̃min � 0 and h̃min � h̃max with �
� 0.4, � � 0.5, � � 0, and h̃max � 1.2h̃c. The assumed wind profile
(shown at right) has jets of 38 and 58 m s�1 centered at heights of
9 and 25 km, respectively. The static stability increases from 0.011
to 0.022 s�1 across z � 11 km, and the assumed density scale
height is 8 km. The momentum forcing is normalized by D*/h.
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�� � �Vk|k|�|�0|�h.

In the unsteady problem, the eddy momentum flux (7)
and the form drag (23) are not interchangeable.1

If |!0| � Vk|k|, we can proceed from (2) using m �
�N|k| sgn(!0)/ !2

0 � f 2 for the vertical wavenumber.
Here f is the (slowly varying) Coriolis parameter and
hydrostatic waves are assumed by taking |!0| � N. Then
(3) is replaced by

���ŵ���z � ��� iN|k|
�0�

�
1

2H�i|k|Vkĥ, �24�

where " �  1 � f 2/!2
0 and Vk is the amplitude of the

velocity oscillation projected onto the wavenumber
vector. We still have that �(�w)/�z � �
 · �V�, and
since the momentum equation implies

� �2

�t2
� f 2���
 · �V�� �

�

�t

2p�, �25�

we may operate on (24) with the transform equivalent
of 
�2� dt(�2/�t2 � f 2) to reach

p̂ � ��N�

|k| �
�2

2H|k|2
i�0�i|k|Vkĥ. �26�

If |!0| � | f |, the first term in (26) produces

p0 � ��
�0 · V, �27�

where �0 is defined by (5) or (6). In this case, 
�0 is not
the momentum perturbation. The correction for the
mean density gradient, say p̂1, can be evaluated in terms
of the field A(x, y) defined earlier. We find that

p1 � �
�2

2H

�V
�t

· 
A. �28�

However, the pressure perturbation is dominated by p0

where � � H. Since |!0| � N, this requires that |k|H �
O(1).

We now put �� � 0 in (23) and substitute from (27)
and (28) for the pressure. This yields

� � �	
�0�
h�T
V � O���H�, �29�

which is the same as in the stationary case (8) except for
the factor " and the different correction for mean den-
sity gradient. This result is directly relevant to internal
waves generated by semidiurnal or higher-frequency
tidal flows in the ocean (Arbic et al. 2004). It also ap-
plies to more general forcing with |!| � | f |, because the
frequency dependence is weak in that limit.

Nonlinearity in the oscillatory limit is measured by
the ratio r � |
 · V�| / |!0|, where V(x, y) refers to the
amplitude of the oscillating velocity perturbation. This
can be seen by writing the horizontal advection as
(
 · V�)V� � 
 · V�V� and exploiting Gauss’s Law and
the far-field weakness of the horizontal flux. Then,
from (24) and mass continuity, the nonlinearity is es-
sentially

r �
|
2h|
��0

2 NV. �30�

This gives, among other things, the ratio of the nonlin-
ear to the linear dimensional drag estimates. Unlike the
analogous parameter, h̃ � Nh/V, for the steady prob-
lem, r depends on the horizontal scale L of the forcing,
since |
2h| � h/L2. This will affect the nonlinear part of
the base flux in the manner described next.

For the maximum or time-averaged linear drag, we
have Dl � �"NVh2/L (reverting to the discrete mean-
ing of h). The saturation drag Dsat is estimated by sub-
stituting for h in this expression, using (30) and r � 1.
Thus, Dsat � �"

3!4
0L3/NV. In view of (29), we should

normalize topographic heights according to

h̃ � ��1� V

�0L0
�2 Nh

V
. �31�

Then the average drag is calculated in the same way as
(15), using the relations (12) and (14) for the horizontal
scale. We find that

�Dp� � a0h̃0



H��2 � 
 � �� � H��5
 � � � 3���h̃0
�4
h̃c

2�3��

H�2
 � ��
���3�0

4L0
3�NV�,

�Dnp� � a1h̃0
�3


H��1 � 5
 � �� � H��5
 � � � ��h̃c
1��

�1 � ��H�2
 � ��
���3�0

4L0
3�NV�. �32�

Velocities are unbounded where |!0| � #| f | because
of resonance, but the pressure perturbation and the
drag both vanish as these latitudes are approached from
the equator (the saturation drag does so quite gradu-

ally). It follows from (31) that the drag becomes more
and more linear (and Dnp eventually drops out) as V →
0. Differences in the exponents compared to (15) are
due to the new dependence on horizontal scale. The

1The high-frequency limit is determined by the terms n�#1 in
the solution by Bannon and Zehnder (1985). Note, however, that
their passing remark about the surface pressure in this limit is
incorrect: the pressure perturbation does not vanish but is given
by (26) below.
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Eliassen–Palm constraint that underlies the traditional
diagnosis of wave breaking still applies to the maximum
(or time-averaged) stress during the oscillation. The al-
terations to the vertical flux profile, given in the steady
case by (21) and (22), are straightforward.

For the earth’s semidiurnal tides, !0 � 1.4 � 10�4

s�1. Then since the deep ocean tidal amplitude is V �
0.02 ms�1 (e.g., Arbic et al. 2004). The oscillatory limit
is valid only at horizontal half-wavelengths, �h � $/|k|,
much greater than about 400 m. Near this transitional
scale, (31) implies that h must be of order V/N, or about
100 m, in order to produce a nonlinear response (the
factor " is irrelevant because the saturation drag is neg-
ligible near the resonant latitudes). At 10 times the
transitional scale, that is, at the scale of present-day
global bathymetric datasets, h must be 2 orders of mag-
nitude larger, or about 10 km, to produce a nonlinear
response. Therefore, nonlinearity in the oscillatory
limit is confined to an extremely narrow range of hori-
zontal scales. Nonlinear drag on the semidiurnal tide is
likely to be dominated by scales shorter than 400 m,
where the disturbance should behave at any given tidal
phase as though the background flow were steady. In
this range of scales, the forcing has to be extrapolated
from data. A semiempirical relation like (14) might
serve that purpose well enough.

5. Summary
Linear analysis gives the vector drag due to station-

ary, hydrostatic, nonrotating internal waves forced by
arbitrary topography. Therefore, statistical or dimen-
sional characterizations of the subgrid terrain are not
required for the linear base-flux computation at most of
the relevant spatial scales. It turns out that the linear
base-flux formula in the case of an unsteady resolved
flow is virtually identical to that for a steady back-
ground flow if the dominant frequencies satisfy ! �
Vk|k|, ! � N and ! � f.

The analytical drag can be made part of a practical
closure for atmospheric general circulation models. The
analysis in the unsteady case could be used for param-
eterizing topographic drag due to semidiurnal tidal os-
cillations in the ocean. The correction for nonlinearity
and the related formula for saturation flux continue to
require an ad hoc treatment. I have suggested a dimen-
sional treatment of the nonlinearity that takes maximal
advantage of the linear solutions. Dimensional analysis
indicates that most of the nonlinearity in the semi-
diurnal ocean tide is captured by the steady-state limit.

The base-flux scheme of Stern and Pierrehumbert
(1988), to take one example, is essentially

D � G
h̃2

a2 � h̃2
�V3�NL, �33�

in which G and a are fixed parameters. Analogous pa-
rameters are needed by more sophisticated schemes,
including those of Baines and Palmer (1990), Lott and

Miller (1997), and Scinocca and McFarlane (2000). The
present approach eliminates the first of the two param-
eters (the linear drag coefficient) by providing the am-
plitude of the linear drag. It also provides the direction
of the drag. The other parameter, a, is both the critical
mountain height and part of the nonlinear drag coeffi-
cient, while the actual function chosen for the transition
to nonlinearity is arbitrary. In the present scheme, the
critical mountain height, h̃c, and the nonlinear drag co-
efficient, a1, remain free parameters. However, the
functional form of the transition is less arbitrary be-
cause (15) incorporates information about the range of
mountain heights within each grid cell, subject to an
assumed power law relation (14) between mountain
height and width.

The present approach to the problem of drag closure
makes it possible to use statistics much more sparingly
than in previous schemes. The use of statistics has been
reduced to a one-parameter height–width relation used
to separate the nonpropagating from the propagating
drag, and this is tightly constrained by the analytical
result. For base-flux estimates in strongly blocking re-
gimes, it is not known whether the nonpropagating drag
estimate improves on methods that rely more funda-
mentally on statistical representations of the unre-
solved topography. However, the propagating part of
the base flux estimate is preferable because the linear
analysis extracts the most relevant information from
the terrain data. The improvement almost certainly ex-
tends to mountains that are marginally blocking.

Above the mountains, the sharpness of the transition
to saturation determines the depth of the layers sub-
jected to momentum forcing. The forcing is therefore
broadened by the proposed ensemble integration.
Broadening due to nonparallel vertical shear and sub-
grid variation of drag orientation (Shutts 1995) is miss-
ing from the scheme. For real topography, there is no
universal relationship between the subgrid drag orien-
tation and subgrid mountain height, which would be
needed to make a simple correction to (21) for rota-
tional shear. A credible solution may be to introduce a
probability distribution for drag angles analogous to,
but independent of, (14). The ensemble integration
would then be two-dimensional.
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APPENDIX

Constraint on the h(L) Relationship

Whether the relationship assumed in (14) is reason-
able can be judged from scatterplots of log height ver-
sus log width of actual terrain features. A naive ap-
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proach to generating these values from the bandpassed
data is as follows. A terrain feature is considered to be
any local maximum. Local minima are ignored because
they would presumably share a width scale with a
nearby maximum. This allows us to enforce h � 0, as
was done in the nonlinear drag analysis, by referring
heights to the minimum value observed within the local
bandpass radius. The widths are then estimated from
the finite-difference Laplacian of the terrain height nor-
malized by the height itself.

The result of using the topographic data directly in
these calculations is an essentially flat distribution of
width that is dominated by the scale of the input grid.
This is because the derivatives in the Laplacian opera-

tor strongly favor the smallest scales. To get a better
picture of the mountain shape distribution, I instead
perform the same analysis on the velocity potential (6),
which is a horizontal integral of height.

The plots in Fig. A1 focus on six geographical re-
gions. The abscissa is the logarithm of normalized ve-
locity potential, and the ordinate is the logarithm of the
aforementioned function of velocity potential that can
be interpreted as the width scale, namely the square
root of A � ��/
2�. The clustering of points near the
mean is exaggerated by the filtering. Although the posi-
tive sign of the correlation is unambiguous, the scatter
is considerable (with correlation coefficients of only 0.2
to 0.3) and difficult to distill.

FIG. A1. Scatterplots of mountain width vs mountain height on log–log axes for six geo-
graphical regions. Width (ordinate) is estimated from the finite-difference Laplacian of the
velocity potential, and height (abscissa) is identified with the velocity potential itself, referred
to the local minimum value. Correlation coefficients range from 0.2 to 0.3. The line segments
show the orientation of the principal components of the distributions excluding the largest
features (see text), with the slope values indicated at the bottom right of each plot.
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With this in mind, I have drawn, for each of the six
regions, the principal component axis for a subset of the
distribution formed by ignoring the largest scales. The
justification for leaving out the largest scales is that the
width computation at that end is strongly affected by
interference from smaller features. When features are
not cleanly separated, the distribution becomes flat.
The slopes of the principal component axes for the full
distributions are generally 0.1 to 0.2, but when we ex-
clude the mountains with dimension exceeding twice
the mean (measured along the principal axis) one gets
the steeper slopes recorded in the plots. These range
from about 0.3 to 0.5. Based on this analysis, I would
settle on � � 0.4 # 0.1 for the parameter in (14), with
the largest values for the Andes and the Alps, and the
smallest values for the Himalayas.
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